
Rev. 32094B-AVR32-05/09

32-bit
Microcontroller

Application Note
AVR32710: Space Vector Modulation using AVR32 UC3
Microcontroller

Features
• Brushless DC Motor
• Space Vector Pulse Width Modulation using 6 PWM channels
• Source Code for GCC compiler
• Use AVR®32 Digital Signal Processing library (DSPLib)

1. Introduction
This application note outlines a demonstration using a stand-alone application on an
AVR32 target. It is a real-time system that computes Space Vector Modulation on a
Brushless DC Motor.

The Space Vector Modulation technique is described in application note AVR435
available on www.atmel.com.

This application is designed to work with the EVK1100 evaluation kit, therefore all the
following information is specific to this board and this specific microcontroller
(AVR32UC3A). Additionally, this application can be easily used by the EVK1101 eval-
uation kit and the specific microcontroller (AVR32UC3B).

Figure 1-1. Block Diagram

HallA

HallB

HallC

BLDC
Motor

Hall Sensors

U
V
W

Vn6 PWMs
channels

3 GPIO
inputs

DSP
Library

Scheduler

LCD Display

AVR32UC3

2. Related Parts
This document applies to the following AT32UC3 parts:

• AT32UC3A0512
• AT32UC3A0256
• AT32UC3A0128
• AT32UC3A1512
• AT32UC3A1256
• AT32UC3A1128
• AT32UC3B0256
• AT32UC3B0128
• AT32UC3B064
• AT32UC3B1256
• AT32UC3B1128
• AT32UC3B164

3. Related Items
The software provided with this application note requires several components:

– AVR32 GNU Toolchain: AVR32 GNU Toolchain is a set of standalone command line
programs used to create applications for AVR32 microcontrollers (compiler,
assembler, linker, debugger).
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

• or
– IAR Embedded Workbench® for Atmel AVR32: IAR Embedded Workbench

provides a suite of AVR32 development tools for embedded systems (compiler,
assembler, linker, debugger). http://www.iar.com/

• EVK1100: The EVK1100 is an evaluation kit and development system for the AVR32
AT32UC3A microcontroller.
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114

• EVK1101: The EVK1101 is an evaluation kit and development system for the AVR32
AT32UC3B microcontroller.
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4175

• AVR32 UC3 Software Framework: This framework provides software drivers and libraries
to build any application for AVR32 UC3. This is where the DSPLib is located.
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

• AT32UC3A0512 Datasheet:
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117

• AT32UC3B0256 Datasheet:
http://www.atmel.com/dyn/products/product_card.asp?part_id=4174

• Space Vector PWM Software Package: avr32710.zip
2
32094B–AVR32–05/09

AVR32710

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.iar.com/
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117

AVR32710
4. Abbreviations
• BLDC: Brushless Direct Current
• SVPWM : Space Vector Pulse Width Modulation
• CW : Clockwise direction / CCW : Counter Clockwise direction
• FCPU : CPU frequency
• FPBA : Peripheral Bus A frequency
3
32094B–AVR32–05/09

5. Motor Control Theory

5.1 Introduction
The most common method used to control DC motors is to modulate the voltage and especially
the duty cycle. This is called the Space Vector Pulse Width Modulation (S.V.P.W.M).

At first, this application note describes the S.V.P.W.M technique and then how to implement
BLDC motor control algorithm on AVR32 UC3 devices.

5.2 Space Vector Pulse Width Modulation Principle

5.2.1 Phase Switching

Figure 5-1. Typical structure of the application

Figure 5-1 shows the typical structure of a BLDC motor connected to a Voltage Source Inverter.
Since the motor is considered as a balanced load with an unconnected neutral,

then

For this three phase power inverter, there are eight possible switching states.

UH

UL

VH

VL VL

WH

HallA

HallB

HallC

BLDC

Hall Sensors

U
V
W

Vn
Vdc

0=++ cnbnan VVV
4
32094B–AVR32–05/09

AVR32710

AVR32710
Figure 5-2. Possible switching configurations of a 3-phase inverter

These combinations generates eight 3-phases voltages combinations

Table 5-1. Switching configurations and output voltages of a 3-phase inverter

WH VH UH Van Vbn Vcn

0 0 0 0 0 0

0 0 1 -Vdc/3 -Vdc/3 +2Vdc/3

0 1 0 -Vdc/3 +2Vdc/3 -Vdc/3

0 1 1 -2Vdc/3 -Vdc/3 -Vdc/3

1 0 0 +2Vdc/3 -Vdc/3 -Vdc/3

1 0 1 Vdc/3 -2Vdc/3 Vdc/3

1 1 0 Vdc/3 Vdc/3 -2Vdc/3

1 1 1 0 0 0

Possible Switching Configuration of a 3-phase inverter
5
32094B–AVR32–05/09

5.2.2 New Space Vectors using Clarke Transformation

Figure 5-3. Basic Space Vectors

These 3-phases voltage combinations are converted by Clarke transformation and could be
expressed in complex form.

In sector (1), for example,

So,

(1)

(2)

(3)

(4)

(5)

(6)

d

q

V1

V2V3

V4

V5 V6

θj
sms eVV =*

θ
1Vd x

2Vd y

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Π
−

Π
+

Π
−

Π
−

=⎥
⎦

⎤
⎢
⎣

⎡

cn

bn

an

qs

ds

V
V
V

K
V
V

.
)
6

cos()
6

cos(0

)
3

cos()
3

cos(1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

cn

bn

an

qs

ds

V
V
V

V
V

2
3

2
30

2
1

2
11

3
2

6
32094B–AVR32–05/09

AVR32710

AVR32710
It implies as well that switching configuration tables could be expressed in (d-q) format

Each space vector corresponding to WH,VH and UH could be expressed as a combination of
Vds and Vqs (vector list in Figure 5-2). This mean for example (WH,VH,UH)=(1,0,0)=V5

5.2.3 Stepping increment and sampling frequency
In this case, it is possible to define any stator voltage as:

With

As shown in Figure 5-3, the angle decomposes every step of Space Vector computation algo-
rithm. As the expression of stator voltage is identical in all the 6 sectors, it is possible to only
compute equation (1) and (2).

But, every step in computation is given for a angular frequency (in cycles/sec) :

The Ftick is defined as the sampling frequency or the basic frequency of the application. n is the
angle stepping increment from the range

For example, with a frequence of tick equal to 20KHz and a resolution up to 8 bits,it is possible
to define a step range from [0;78] thus an angle precision of 0.77 degree.

As the UC3 family has DSP instructions support, the sinus and cosinus computation will be done
in software for SVPWM and not with a lookup table. Thus, it is possible to define a specific reso-
lution for an application.

Table 5-2. Switching configurations and output voltages of a 3-phase in (d-q) format

WH VH UH Vds Vqs Vector Sector

0 0 1 2Vdc/3 0 V1 (1)

1 1 0 +Vdc/3 +Vdc/3 V2 (2)

0 1 0 -Vdc/3 +Vdc/3 V3 (3)

1 1 0 -2Vdc/3 0 V4 (4)

1 0 0 -Vdc/3 -Vdc/3 V5 (5)

1 0 1 Vdc/3 -Vdc/3 V6 (6)

yyxs UddxUeVV +== θ
max

)2()sin(

)1()
3

sin(

θ

θ

=

−
Π

=

dy

dx

nFtickn
resolution

××
Π

=
23

)(θ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
resolution

Ftick
2
;0
7
32094B–AVR32–05/09

6. Motor Control Processing computations

6.1 Flow Chart Diagram
From the SVPWM technique, it is possible to distinguish several actions:

• Sector Determination
• PI Corrector
• Space Vector Computation
Before starting application development, it could be interesting to consider clock source
reference:

• Sector Determination: at every hall sensors interrupt a new sector position is reached. So
that means that this interrupt should trigger a task that compute Sector Determination
Algorithm (electrical position of stator).

• Space Vector Computation
Here is the flow chart diagram for the process in this application.

Figure 6-1. Flow chart diagram

Task #1

Every ‘Period regulation’ period the corrector (Proportionnal and Integer: P.I) is executed and
updates amplitude factor used by the S.V.P.M.

Task #2

Every ‘tick’ period in the Space Vector calculation is computed.
8
32094B–AVR32–05/09

AVR32710

AVR32710
6.2 Space Vector Modulation
For an efficient implementation of SV-PWM, we use DSP library for cosinus and sinus
computation.

Once dx and dy are calulated, a set of 3 compare values Ta,Tb and Tc need to be calculated
every PWM period to generate this pattern.

Figure 6-2. PWM output switching pattern case in Sector 1

)sin(

)
3

sin(

θ

θ

=

−
Π

=

dy

dx

2*T

T

dx dy t0t0

PWM2

PWM1

PWM0

Tc

Tb

Ta
9
32094B–AVR32–05/09

We can say that for this sector 0:

The Table 6-1 shows all duty cycle values for each sector number. For a sector number the duty
cycle for the six half bridge is expressed by:

UH = PWM0 and UL = T-(PWM0)

VH = PWM1 and VL = T-(PWM1)

WH = PWM2 and WL = T-(PWM2)
The two rotating directions are described. In case of CCW direction, that means the rotor follows
the sequence Sector number = {6,5,4,3,2,1} and in case of CW direction, the sequence
{1,2,3,4,5,6}.

Table 6-1. PWM duty cycle results with SVPWM computation

Sector
Number q direction = CCW direction = CW

1

PWM0 = (T - dx -dy)/2

PWM1 = (T + dx -dy)/2

PWM2 = (T + dx + dy)/2

PWM0 = (T + dx + dy)

PWM1 =(T - dx - dy)

PWM2 = (T - dx + dy)

2

PWM0 = (T - dx + dy)/2

PWM1 =(T - dx - dy)/2
PWM2 = (T + dx + dy)/2

PWM0 = (T + dx + dy)/2

PWM1 = (T + dx - dy)/2

PWM2 =(T - dx - dy)/2

3

PWM0 = (T + dx + dy)/2

PWM1 = (T - dx - dy)/2

PWM2 = (T + dx - dy)/2

PWM0 = (T - dx + dy)/2
PWM1 = (T + dx + dy)/2

PWM2 = (T - dx - dy)/2

4

PWM0 = (T + dx + dy)/2
PWM1 = (T -dx + dy)/2

PWM2 = (T - dx + dy)/2

PWM0 = (T - dx -dy)/2

PWM1 = (T + dx + dy)/2
PWM2 = (T + dx - dy)/2

5

PWM0 = (T + dx - dy)/2

PWM1 = (T + dx + dy)/2
PWM2 = (T - dx - dy)/2

PWM0 = (T - dx - dy)/2

PWM1 = (T - dx + dy)/2

PWM2 = (T + dx + dy)/2

6

PWM0 = (T - dx - dy)/2

PWM1 = (T + dx + dy)/2

PWM2 = (T - dx + dy)/2

PWM0 =(T + dx -dy)/2
PWM1 = (T - dx -dy)/2

PWM2 = (T + dx + dy)/2

()

ac

axb

yx
a

TTT

TdT

ddT
T

−=

+=

−−
=

2

0 π
3
---[,]

π
3
--- 2π

3
------[,]

2π
3

------ π[,]

π 4π
3

------[,]

4π
3

------ 5π
3

------[,]

5π
3

------ 2π[,]
10
32094B–AVR32–05/09

AVR32710

AVR32710
6.2.1 Pulse Width Modulation Generation

6.2.1.1 Using PWM module
The AVR32 UC3 is able to generate PWM signals through a dedicated PWM module or through
the Timer Counter used. The PWM module is used in this application (1) .

• We need first to setup alternate functions of GPIO corresponding to alternate pins/functions
used for PWM channels.

• PWM module is configured in center aligned mode or left aligned mode. We will only
consider PWM module in center aligned mode to fit with S.V.P.W.M implementation. To
configure this mode, we need to set:
– CALG bifield in CMRx register at ‘1’ (fixed value)

• The PWM module has its own global prescaler.
– PREA,PREB bitfield in PWM.MR register

• Each PWM channels has its own prescaler as well. It is possible to define a different period
for a given channel x.
– CPRE bitfield in PWM.CMRx register

• The PWM period and duty cycle is configured from this prescaled period:
– CPRD bitfield in CMRx register
– CDTY bitfield in CMRx register

• Finally enable PWM channel
– CHIDx id in ENA register

Figure 6-3. PWM Channel in center aligned mode

Let’s take the following example:

1. Refer to UC3 datasheet section PWM for more details

Table 6-2. PWM calculation example

PBA(MHz) CMRx.CPRE MR.DIVA MR.DIVB CPRDx PWM(Hz)

24 1 0 0 256 23437

CounterValue

Value

CDTY

PWMx

PWM in
Center Aligned Mode

UH

UL

YH

YL ZL

ZH

HallA

HallB

HallC

BLDC

Hall Sensors

CPRD

)(
2

s
PBA

CPRDxDIVA
PERIOD

×
=

11
32094B–AVR32–05/09

6.3 Tick Reference Generation
The tick reference is generated with a timer counter usage.

The AVR32 UC3 family is able to generate timer event signals through a dedicated Timer Coun-
ter module or through CPU cycle counter mode. Only the Timer Counter is used in this
application (1) .

Timer Counter module could be used in Capture Mode or Waveforme Mode. We will only con-
sider Timer Counter module in Waveforme mode.

In this mode, the counter will count up until a compare value (RC compare register), reset and
restart from 0x0000. It is possible to generate an interrupt upon RC compare match. This inter-
rupt occurs every tick period.

Figure 6-4. Tick generation

• The Timer Counter module has its clock selection source that the user can select:
– TCCLKS bitfield in TC.CMR register

• RC compare register will define the periodicity of interrupt:
– RC bitfield in TC.RC register

• To enable Timer Counter channel, set:
– CLKEN in TC.CCR registe)

Let’s take the following example:

The Tick period value is equal to

1. Refer to UC3 datasheet section Timer Counter for more details

Table 6-3. Timer Counter calculation example

PBA(MHz) CMR.CCLKS CMR.WAVE CMR.WAVESEL RC Tick(Hz)

24 1/(FPBA/8) 1 2 4000 1000

0xFFFF

rc

ra,rb tick0

RC
FPBA

tick ×=
8/

1

12
32094B–AVR32–05/09

AVR32710

AVR32710
6.4 Hall Estimator
Each Hall sensor is connected to GPIO. All GPIOs are able to generate interrupts.

By default, interrupts are configured to be used with pin level changes.

6.4.1 Sector determination
The Sector Determination is based on the reading of the three Hall sensors. During one electri-
cal revolution, the three Hall sensors generate 6 steps. These 6 steps divide the circle into 6
sectors which will be used in the SVPWM

6.4.2 Speed determination
In order to determine rotor speed, we need to determine time elapsed between two interrupts.

The AVR32 UC3 microcontroller is able to measure time elapsed between two events using a
dedicated timer counter. This counter computes the number of CPU cycles elpased in a certain
time period. In this case, the time elapsed is equal to:

After having measured time elapsed between two interrupts.

Figure 6-5. Hall sensors signals

The electrical speed of motor is defined as

For example, with n=4 and Fcpu = 48MHz

CPUF
nnt 1)(×=Δ

HALL_A

HALL_B

HALL_C

tΔ

nbpoles
Speed

RpmSpeed

t
HzSpeed

electrical
mecanical

electrical

×
=

Δ×
=

60
)(

6
1)(

rpmrpmSpeed
HzHzSpeed

nbpoles

mecanical

electrical

1335)(
89)(

4

=
=

=

13
32094B–AVR32–05/09

7. Software Implementation

Figure 7-1. Block diagram

This application is based on a loop regulation.

• The timer counter generates an interrupt based on a clock reference. This reference named
tick is prescaled to generate the period regulation .

• The hall_estimator computes the motor position from the GPIO inputs and the motor speed
from tick reference value.

• The period_regulation_task computes a new value of amplitude from the last value of
amplitude and a new motor speed value each period regulation clock.

• The SVPWM uses the motor_position and the amplitude to update all duty cycles. These
new duty cycles values are used to update the PWM channel duty cycle.

Periodically, the amplitude is updated with:

Prescalor
(Section 5.3)Timer Counter

HALL_ESTIMATOR
task #2

(Section 5.4)

PERIOD_REGULATION_TASK
task #1

SVPWM
computation

task #2
(Section 5.2)

Hall A

Hall B

Hall C

UH(Q1)
UL(Q2)
YH(Q3)
YL(Q4)
ZH(Q5)
ZL(Q6)

PW
M

U

P
D

A
TE

PWM

HARDWARE Layer SOFTWARE Layer Environment Layer

GPIO

Environment Layer

tick

amplitude

period_regulation

∫ −×+−×=)()()()(feedbackreferenceIfeedbackreferencep SpeedSpeedKSpeedSpeedKAMPLITUDE
14
32094B–AVR32–05/09

AVR32710

AVR32710
7.1 Source Code Package Description
The software is available in the attached project on the Atmel web Site. The AVR32710.zip con-
tains the project for the UC3A0512 Rev. E (engineering samples). The EVK110x-MOTOR-
CONTROL-X.Y.Z.ES supports the UC3A0512 Rev. E only.

HTML documentation is included in the package. Use the readme.html file in the doc directory to
start viewing the documentation.

• DRIVERS\
This directory contains all libraries used in the project: especially DRIVERS and DSP library

support.

• SERVICES\MOTOR_CONTROL\
– HALL_ESTIMATOR\

This directory contains the service to determine rotor position (angle and sector).
– MOTOR_DRIVER\BLDC_MOTOR\

This directory contains the service for low level drive of PWM channels.
– SVPWM\

This directory contains the Space Vector computation algorithm.

• APPLICATIONS\EVK110x-MOTOR-CONTROL\BLDC-SVPWM\EXAMPLE\
– bldc_svpwm_example.c

This file contains the main() with all CPU initialization and task launch.
– mc_control.c

This file defines the main control loop sequence.
– mc_driver.c

This files defines the low level loop sequence access.
– sensor_task.c

This files defines dedicated task function for display and motor control.

7.2 CPU Load & Memory Usage

The following benchmarks have been done on AVR32-GCC 4.2.2-atmel.1.0.4 with this

configuration
• FCPU = 42MHz
• FPBA = 21MHz

Table 7-1. Microcontroller utilization rate

Function Parameters
Activation
time

Activation
period

COMPARE_INT_HANDLER HALL_ESTIMATOR 5us 64us
SVPWM_COMPUTATION 20us 64us
15
32094B–AVR32–05/09

8. Hardware Implementation

8.1 EVK1100 Connection

The Table 8-1 lists the connections between evaluation kit and motor connection.

8.2 Power Bridge Presentation
The power bridge board is made up of standard complementary MOSFETs IRF3504.A adapta-
tion stage is used to convert digital signals into analog signals to correctly adress MOSFETs. In
this case, MOSFET drivers are used, IR2101.r

Table 8-1. EVK1100 and Power Bridge Connection

EVK1100 Power Bridge

PWM0 UH

PWM1 UL

PWM2 VH

PWM3 VL

PWM4 WH

PWM5 WL

GPIO/10 H1

GPIO/29 H2

GPIO/30 H3
16
32094B–AVR32–05/09

AVR32710

AVR32710
9. Running the application

9.1 Loading the Code
The AVR32 UC3 ISP solution offers an easy way to download files into AVR32 products on
Atmel Evaluation Kits through the JTAG link (via the JTAGICE mkII debugger tools) or the USB
bootloader.

Follow the steps below to build the application, load and run the code:

If you are using GCC with the AVR32 GNU Toolchain :
- Make sure the board is powered off.
- Plug power cable on EVK1100 and power it at 12V.
- In case you use a JTAG link:
– - Plug the JTAGICE mkII between the PC and the EVK1100 using the JTAG

connector.
– - Open a Cygwin or a Linux shell, go to the APPLICATIONS/EVK110x-MOTOR-

CONTORL/AT32UC3A0512ES/GCC directory and type :
make rebuild program run

- In case you use USB bootloader:
– - Plug the USB cable between the PC and the EVK1100 using the USB connector.
– - Open a Cygwin or a Linux shell, go to the APPLICATIONS/EVK110x-MOTOR-

CONTORL/AT32UC3A0512ES/GCC directory and type :
make rebuild isp program run

If you are using AVR32 Studio:
– Please follow the UC3 Software Framework procedure in application note AVR32008

If you are using IAR Embedded Workbench for Atmel AVR32:
- Make sure the board is powered off.
- Plug the JTAGICE mkII between the PC and the EVK1100 using the JTAG connector.
- Plug power cable on EVK1100 and power it at 12V.
- Open IAR® and load the associated IAR project of this application (located in the directory
EVK110x-MOTOR-CONTORL/AT32UC3A0512ES/IAR).
- Press the “Debug” button at the top right of the IAR interface.

The project should compile. Then the generated binary file is downloaded to the microcontroller to finally switch
on the debug mode.

- Click on the “Go” button in the “Debug” menu or press F5.
The code then starts running.
17
32094B–AVR32–05/09

9.2 Running the Application

• Power up the board. The LCD displays :

– State of the motor (Run or Stop)
– Speed Motor value (In percent of maximum value)
– Direction (Forward or Backward)

• Push Up the Joystick. The motor starts to run

• Push Right the Joystick. The motor turns in forward direction.

• Note that speed value is changed with potentiometer
18
32094B–AVR32–05/09

AVR32710

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®32 and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
32094B–AVR32–05/09

	Features
	1. Introduction
	2. Related Parts
	3. Related Items
	4. Abbreviations
	5. Motor Control Theory
	5.1 Introduction
	5.2 Space Vector Pulse Width Modulation Principle
	5.2.1 Phase Switching
	5.2.2 New Space Vectors using Clarke Transformation
	5.2.3 Stepping increment and sampling frequency

	6. Motor Control Processing computations
	6.1 Flow Chart Diagram
	6.2 Space Vector Modulation
	6.2.1 Pulse Width Modulation Generation
	6.2.1.1 Using PWM module

	6.3 Tick Reference Generation
	6.4 Hall Estimator
	6.4.1 Sector determination
	6.4.2 Speed determination

	7. Software Implementation
	7.1 Source Code Package Description
	7.2 CPU Load & Memory Usage

	8. Hardware Implementation
	8.1 EVK1100 Connection
	8.2 Power Bridge Presentation

	9. Running the application
	9.1 Loading the Code
	9.2 Running the Application

